Higher-dimensional Temperley-Lieb algebras

نویسندگان

  • Marcos Alvarez
  • Paul P. Martin
چکیده

A category which generalises to higher dimensions many of the features of the Temperley-Lieb category is introduced. MSC-class: 81R50 (primary), 82B20 (secondary).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4 N ov 1 99 8 ON REPRESENTATIONS OF AFFINE TEMPERLEY – LIEB ALGEBRAS , II

We study some non-semisimple representations of affine Temperley–Lieb algebras and related cellular algebras. In particular, we classify extensions between simple standard modules. Moreover, we construct a completion which is an infinite dimensional cellular algebra.

متن کامل

Combinatorial Gelfand Models for Semisimple Diagram Algebras

We construct combinatorial (involutory) Gelfand models for the following diagram algebras in the case when they are semi-simple: Brauer algebras, their partial analogues, walled Brauer algebras, their partial analogues, Temperley-Lieb algebras, their partial analogues, walled Temperley-Lieb algebras, their partial analogues, partition algebras and their Temperley-Lieb analogues.

متن کامل

The representation theory of cyclotomic Temperley-Lieb algebras

A class of associative algebras called cyclotomic Temperley-Lieb algebras is introduced in terms of generators and relations. They are closely related to the group algebras of complex reflection groups on one hand and generalizations of the usual Temperley-Lieb algebras on the other hand. It is shown that the cyclotomic Temperley-Lieb algebras can be defined by means of labelled Temperley-Lieb ...

متن کامل

Dual Presentation and Linear Basis of the Temperley-lieb Algebras

The braid groups map homomorphically into the Temperley-Lieb algebras. Recently, Zinno showed that the homomorphic images of the simple elements arising from the dual presentation of the braid groups form a basis for the vector space underlying the Temperley-Lieb algebras. We give a simple geometric proof of his theorem, using a new presentation of the Temperley-Lieb algebras that corresponds t...

متن کامل

Dual Presentation and Linear Basis of Temperley-lieb Algebra

The braid groups map homomorphically into the Temperley-Lieb algebras. Recently, Zinno showed that the homomorphic images of the simple elements arising from the dual presentation of the braid groups form a basis for the vector space underlying the Temperley-Lieb algebras. We give a simple geometric proof of his theorem, using a new presentation of the Temperley-Lieb algebras that corresponds t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007